Cantor diagonal proof

Cantor's Diagonal Argument ] is uncountable. Proof: We will argue indirectly. Suppose f:N → [0, 1] f: N → [ 0, 1] is a one-to-one correspondence between these two sets. We intend to argue this to a contradiction that f f cannot be "onto" and hence cannot be a one-to-one correspondence -- forcing us to conclude that no such function exists.

Cantor diagonal proof. 21 мар. 2016 г. ... In 1891, he published a second proof, introducing what came to be known as the diagonal argument, a beautiful and versatile tool. (First ...

I'm trying understand the proof of the Arzela Ascoli theorem by this lecture notes, but I'm confuse about the step II of the proof, because the author said that this is a standard argument, but the diagonal argument that I know is the Cantor's diagonal argument, which is used in this lecture notes in order to prove that $(0,1)$ is uncountable ...

In this article we are going to discuss cantor's intersection theorem, state and prove cantor's theorem, cantor's theorem proof. A bijection is a mapping that is injective as well as surjective. Injective (one-to-one): A function is injective if it takes each element of the domain and applies it to no more than one element of the codomain. It ...There are other diagonalization proofs which share essential properties with the Cantor diagonal proof: they include the halting problem argument, standard proofs for Godel's incompleteness theorem and Tarski's theorem on the undefinability of truth, Curry's paradox (and Russell's paradox for that matter).In today’s rapidly evolving job market, it is crucial to stay ahead of the curve and continuously upskill yourself. One way to achieve this is by taking advantage of the numerous free online courses available.Cantor's diagonal argument concludes the cardinality of the power set of a countably infinite set is greater than that of the countably infinite set. In other words, the infiniteness of real numbers is mightier than that of the natural numbers. The proof goes as follows (excerpt from Peter Smith's book):What about in nite sets? Using a version of Cantor’s argument, it is possible to prove the following theorem: Theorem 1. For every set S, jSj <jP(S)j. Proof. Let f: S! P(S) be any function and de ne X= fs2 Sj s62f(s)g: For example, if S= f1;2;3;4g, then perhaps f(1) = f1;3g, f(2) = f1;3;4g, f(3) = fg and f(4) = f2;4g. In Feb 5, 2021 · Cantor’s diagonal argument answers that question, loosely, like this: Line up an infinite number of infinite sequences of numbers. Label these sequences with whole numbers, 1, 2, 3, etc. Then, make a new sequence by going along the diagonal and choosing the numbers along the diagonal to be a part of this new sequence — which is also ... Cantor's diagonal proof shows how even a theoretically complete list of reals between 0 and 1 would not contain some numbers. My friend understood the concept, but disagreed with the conclusion. He said you can assign every real between 0 and 1 to a natural number, by listing them like so:

Cantor gave several proofs of uncountability of reals; one involves the fact that every bounded sequence has a convergent subsequence (thus being related to the nested interval property). All his proofs are discussed here: MR2732322 (2011k:01009) Franks, John: Cantor's other proofs that R is uncountable. (English summary) Math. Mag. 83 (2010 ...Cantor's diagonal proof is one of the most elegantly simple proofs in Mathematics. Yet its simplicity makes educators simplify it even further, so it can be taught to students who may not be ready. Because the proposition is not intuitive, this leads inquisitive students to doubt the steps that are misrepresented.Your car is your pride and joy, and you want to keep it looking as good as possible for as long as possible. Don’t let rust ruin your ride. Learn how to rust-proof your car before it becomes necessary to do some serious maintenance or repai...Cantor himself proved (before creating the diagonal proof) that the reals are uncountable by another method (based upon the fact that, in $\mathbb R$, every bounded monotonic sequence converges). There are other proofs that the reals are uncountable.Aug 21, 2012 · 题库、试卷建设是教学活动的重要组成部分,传统手工编制的试卷经常出现内容雷同、知识点不合理以及笔误、印刷错误等情况。为了实现离散数学题库管理的信息化而开发了离散数学题库管理系统。该系统采用C/S 模式,前台采用JAVA(JBuilder2006),后台采用SQLServer2000数据库。Although Cantor had already shown it to be true in is 1874 using a proof based on the Bolzano-Weierstrass theorem he proved it again seven years later using a much simpler method, Cantor's diagonal argument. His proof was published in the paper "On an elementary question of Manifold Theory": Cantor, G. (1891).diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: Cantor's diagonal argument (the earliest) Cantor's theorem. Russell's paradox. Diagonal lemma. Gödel's first incompleteness theorem. Tarski's undefinability theorem.

Also, the proof in Cantor's December 7th letter shows some of the reasoning that led to his discovery that the real numbers form an uncountable set. Cantor's December 7, 1873 proof ... Cantor's diagonal argument has often replaced his 1874 construction in expositions of his proof. The diagonal argument is constructive and produces a more ...In this guide, I'd like to talk about a formal proof of Cantor's theorem, the diagonalization argument we saw in our very first lecture.Cantor's diagonalization is a way of creating a unique number given a countable list of all reals. ... Cantor's Diagonal proof was not about numbers - in fact, it was specifically designed to prove the proposition "some infinite sets can't be counted" without using numbers as the example set. (It was his second proof of the proposition, and the ...Aug 5, 2015 · $\begingroup$ This seems to be more of a quibble about what should be properly called "Cantor's argument". Certainly the diagonal argument is often presented as one big proof by contradiction, though it is also possible to separate the meat of it out in a direct proof that every function $\mathbb N\to\mathbb R$ is non-surjective, as you do, and ... Why doesn't this prove that Cantor's Diagonal argument doesn't work? 2. Proof that rationals are uncountable. 1. Why does Cantor's diagonalization not disprove the countability of rational numbers? Related. 5. Why does Cantor's Proof (that R is uncountable) fail for Q? 10.

Healthquest kansas.

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the …Jul 6, 2020 · Although Cantor had already shown it to be true in is 1874 using a proof based on the Bolzano-Weierstrass theorem he proved it again seven years later using a much simpler method, Cantor’s diagonal argument. His proof was published in the paper “On an elementary question of Manifold Theory”: Cantor, G. (1891). The Power Set Proof. The Power Set proof is a proof that is similar to the Diagonal proof, and can be considered to be essentially another version of Georg Cantor’s proof of 1891, [ 1] and it is usually presented with the same secondary argument that is commonly applied to the Diagonal proof. The Power Set proof involves the notion of subsets. May 4, 2023 · Cantor’s diagonal argument was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets that cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are known as uncountable sets and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began. Jul 22, 2023 · Why does Cantor's diagonal argument not work for rational numbers? 5. Why does Cantor's Proof (that R is uncountable) fail for Q? 65. Why doesn't Cantor's diagonal argument also apply to natural numbers? 44. The cardinality of the set of all finite subsets of an infinite set. 4.

What about in nite sets? Using a version of Cantor’s argument, it is possible to prove the following theorem: Theorem 1. For every set S, jSj <jP(S)j. Proof. Let f: S! P(S) be any function and de ne X= fs2 Sj s62f(s)g: For example, if S= f1;2;3;4g, then perhaps f(1) = f1;3g, f(2) = f1;3;4g, f(3) = fg and f(4) = f2;4g. In I am trying to prove that the set of all functions from the set of even numbers into $\ ... {0,1\}$ is uncountable) but I am having a problem with applying Cantor's diagonal argument in this particular case. Can you please give me any hints? functions; elementary-set-theory; Share. Cite. Follow edited Jan 4, 2016 at 13:48 . Andrés E. Caicedo ...There’s a lot that goes into buying a home, from finding a real estate agent to researching neighborhoods to visiting open houses — and then there’s the financial side of things. First things first.For constructivists such as Kronecker, this rejection of actual infinity stems from fundamental disagreement with the idea that nonconstructive proofs such as Cantor's diagonal argument are sufficient proof that something exists, holding instead that constructive proofs are required. Intuitionism also rejects the idea that actual infinity is an ... Mar 13, 2015 · 1.3.2 Lemma. The Cantor set D is uncountable. There are a few di erent ways to prove Lemma 1.3.2, but we will not do so here. Most proofs use Cantor’s diagonal argument which is outside the scope of this thesis. For the curious reader, a proof can be found in [5, p.58]. 1.3.3 Lemma. The Cantor set D does not contain any intervals of non …21 янв. 2021 г. ... in his proof that the set of real numbers in the segment [0,1] is not countable; the process is therefore also known as Cantor's diagonal ...The following proof is incorrect From: https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument...The Cantor set is uncountable. Proof. We use a method of proof known as Cantor’s diagonal argument. Suppose instead that C is countable, say C = fx1;x2;x3;x4;:::g. Write x i= 0:d 1 d i 2 d 3 d 4::: as a ternary expansion using only 0s and 2s. Then the elements of C all appear in the list:Abstract. We examine Cantor’s Diagonal Argument (CDA). If the same basic assumptions and theorems found in many accounts of set theory are applied with a standard combinatorial formula a ...If that were the case, and for the same reason as in Cantor's diagonal argument, the open rational interval (0, 1) would be non-denumerable, and we would have a ...At the outset Cantor’s proof is compared with some other famous proofs such as Dedekind’s recursion. ... This paper critically examines the Cantor Diagonal Argument (CDA) that is used in set theory to draw a distinction between the cardinality of the natural numbers and that of the real numbers. In the absence of a verified English ...Abstract. We examine Cantor’s Diagonal Argument (CDA). If the same basic assumptions and theorems found in many accounts of set theory are applied with a standard combinatorial formula a ...

In today’s rapidly evolving job market, it is crucial to stay ahead of the curve and continuously upskill yourself. One way to achieve this is by taking advantage of the numerous free online courses available.

I'm looking to write a proof based on Cantor's theorem, and power sets. Stack Exchange Network. Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the ... (binary sequences). Prove that A is uncountable using Cantor's Diagonal Argument. 0. Proving that the set of all functions from $\mathbb{N}$ to $\{4, 5, 6\}$ is ...In this guide, I'd like to talk about a formal proof of Cantor's theorem, the diagonalization argument we saw in our very first lecture. Theorem 4.9.1 (Schröder-Bernstein Theorem) If ¯ A ≤ ¯ B and ¯ B ≤ ¯ A, then ¯ A = ¯ B. Proof. We may assume that A and B are disjoint sets. Suppose f: A → B and g: B → A are both injections; we need to find a bijection h: A → B. Observe that if a is in A, there is at most one b1 in B such that g(b1) = a. There is, in turn, at ...Cantor's diagonal proof is one of the most elegantly simple proofs in Mathematics. Yet its simplicity makes educators simplify it even further, so it can be taught to students who may not be ready. Because the proposition is not intuitive, this leads inquisitive students to doubt the steps that are misrepresented.About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ...Cantor's diagonal is a trick to show that given any list of reals, a real can be found that is not in the list. First a few properties: You know that two numbers differ if just one digit differs. If a number shares the previous property with every number in a set, it is not part of the set. Cantor's diagonal is a clever solution to finding a ... This note describes contexts that have been used by the author in teaching Cantor’s diagonal argument to fine arts and humanities students. Keywords: Uncountable set, Cantor, diagonal proof, infinity, liberal arts. INTRODUCTION C antor’s diagonal proof that the set of real numbers is uncountable is one of the most famous argumentsThe 1981 Proof Set of Malaysian coins is a highly sought-after set for coin collectors. This set includes coins from the 1 sen to the 50 sen denominations, all of which are in pristine condition. It is a great addition to any coin collectio...What they have in common is that you kind of have a bunch of things indexed by two positive integers, and one looks at those items indexed by pairs $(n,n)$. The "diagonalization" involved in Goedel's Theorem is the Diagonal Lemma. There is a bit of an analogy with Cantor, but you aren't really using Cantor's diagonal argument. $\endgroup$Cantor's argument is that for any set you use, there will always be a resulting diagonal not in the set, showing that the reals have higher cardinality than whatever countable set you can enter. The set I used as an example, shows you can construct and enter a countable set, which does not allow you to create a diagonal that isn't in the set.

Mason finley.

Jamie wilson.

The Cantor diagonal method, also called the Cantor diagonal argument or Cantor's diagonal slash, is a clever technique used by Georg Cantor to show that the integers and reals cannot be put into a one-to-one correspondence (i.e., the uncountably infinite set of real numbers is "larger" than the...A Diagonal Proof That Not All Functions Are Primitive Recursive. We can indeed prove that not all functions are primitive recursive, and in a similar way to Cantor’s diagonal method. Restrict our attention to functions in one variable. Start by making the assumption that every function is primitive recursive.Iterating by Diagonals over a matrix of reals to prove that the set of real numbers on the interval [0,1) is countable [closed] Thread starter paul.da.programmer Start date 4 minutes agoMay 8, 2009 · 1.3 The Diagonal ‘Proof’ Redecker discusses whether the diagonal ‘proof’ is indeed a proof, a paradox, or the definition of a concept. Her considerations first return to the problem of understanding ‘different from an infinite set of numbers’ in an appropriate way, as the finite case does not fix the infinite case. The canonical proof that the Cantor set is uncountable does not use Cantor's diagonal argument directly. It uses the fact that there exists a bijection with an uncountable set (usually the interval $[0,1]$). Now, to prove that $[0,1]$ is uncountable, one does use the diagonal argument. I'm personally not aware of a proof that doesn't use it.Cantor's diagonal proof can be imagined as a game: Player 1 writes a sequence of Xs and Os, and then Player 2 writes either an X or an O: Player 1: XOOXOX. Player 2: X. Player 1 wins if one or more of his sequences matches the one Player 2 writes. Player 2 wins if Player 1 doesn't win.Sep 26, 2023 · Georg Cantor, in full Georg Ferdinand Ludwig Philipp Cantor, (born March 3, 1845, St. Petersburg, Russia—died January 6, 1918, Halle, Germany), German mathematician who founded set theory and …The proof is the list of sentences that lead to the final statement. In essence then a proof is a list of statements arrived at by a given set of rules. Whether the theorem is in English or another "natural" language or is written symbolically doesn't matter. What's important is a proof has a finite number of steps and so uses finite number of ...I'm trying to grasp Cantor's diagonal argument to understand the proof that the power set of the natural numbers is uncountable. On Wikipedia, there is the following illustration: The explanation of the proof says the following: By construction, s differs from each sn, since their nth digits differ (highlighted in the example).20 июл. 2016 г. ... I will directly address the supposed “proof” of the existence of infinite sets – including the famous “Diagonal Argument” by Georg Cantor, which ...The diagonal argument, by itself, does not prove that set T is uncountable. … ….

29 дек. 2015 г. ... The German mathematician Georg Cantor (1845-1918) invented set theory and the mathematics of infinite numbers which in Cantor's time was ...Cantor’s diagonal argument was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets that cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are known as uncountable sets and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.This famous paper by George Cantor is the first published proof of the so-called diagonal argument, which first appeared in the journal of the German Mathematical Union (Deutsche Mathematiker-Vereinigung) (Bd. I, S. 75-78 (1890-1)). The society was founded in 1890 by Cantor with other mathematicians. Cantor was the first president of the society.Cantor’s diagonal argument answers that question, loosely, like this: Line up an infinite number of infinite sequences of numbers. Label these sequences with whole numbers, 1, 2, 3, etc. Then, make a new sequence by going along the diagonal and choosing the numbers along the diagonal to be a part of this new sequence — which is also ...Cantor's diagonal argument is a proof devised by Georg Cantor to demonstrate that the real numbers are not countably infinite. (It is also called the diagonalization argument or the diagonal slash argument or the diagonal method .) The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, but was published ... Nov 4, 2013 · The premise of the diagonal argument is that we can always find a digit b in the x th element of any given list of Q, which is different from the x th digit of that element q, and use it to construct a. However, when there exists a repeating sequence U, we need to ensure that b follows the pattern of U after the s th digit. Georg Cantor discovered his famous diagonal proof method, which he used to give his second proof that the real numbers are uncountable. It is a curious fact that Cantor’s first proof of this theorem did not use diagonalization. Instead it used concrete properties of the real number line, including the idea of nesting intervals so as to avoid ... Cantor’s first proof of this theorem, or, indeed, even his second! More than a decade and a half before the diagonalization argument appeared Cantor published a different proof of the uncountability of R. The result was given, almost as an aside, in a pa-per [1] whose most prominent result was the countability of the algebraic numbers.In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. 58 relations. Cantor diagonal proof, Feb 28, 2017 · The problem I had with Cantor's proof is that it claims that the number constructed by taking the diagonal entries and modifying each digit is different from every other number. But as you go down the list, you find that the constructed number might differ by smaller and smaller amounts from a number on the list. , Cantor's diagonal argument is a mathematical method to prove that two infinite sets have the same cardinality. Cantor published articles on it in 1877, 1891 and 1899. His first proof of the diagonal argument was published in 1890 in the journal of the German Mathematical Society (Deutsche Mathematiker-Vereinigung). According to Cantor, two sets have the same cardinality, if it is possible to ..., ÐÏ à¡± á> þÿ C E ..., Cantor's diagonal argument concludes the cardinality of the power set of a countably infinite set is greater than that of the countably infinite set. In other words, the infiniteness of real numbers is mightier than that of the natural numbers. The proof goes as follows (excerpt from Peter Smith's book):, Cantor's Diagonal Argument A Most Merry and Illustrated Explanation (With a Merry Theorem of Proof Theory Thrown In) (And Fair Treatment to the Intuitionists) (For a briefer and more concise version of this essay, click here .) George showed it wouldn't fit in. A Brief Introduction, Cantor's diagonal argument is a proof devised by Georg Cantor to demonstrate that the real numbers are not countably infinite. (It is also called the diagonalization argument or the diagonal slash argument or the diagonal method .) The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, but was published ... , Cantor's Diagonal Argument in Agda. Mar 21, 2014. Cantor's diagonal argument, in principle, proves that there can be no bijection between N N and {0,1}ω { 0 ..., Cantor's Diagonal Argument: The maps are elements in N N = R. The diagonalization is done by changing an element in every diagonal entry. Halting Problem: The maps are partial recursive functions. The killer K program encodes the diagonalization. Diagonal Lemma / Fixed Point Lemma: The maps are formulas, with input being the codes of sentences., Nov 9, 2019 · $\begingroup$ But the point is that the proof of the uncountability of $(0, 1)$ requires Cantor's Diagonal Argument. However, you're assuming the uncountability of $(0, 1)$ to help in Cantor's Diagonal Argument. , In this guide, I'd like to talk about a formal proof of Cantor's theorem, the diagonalization argument we saw in our very first lecture. , Cantor's Diagonal Proof A re-formatted version of this article can be found here . Simplicio: I'm trying to understand the significance of Cantor's diagonal proof. I find it especially confusing that the rational numbers are considered to be countable, but the real numbers are not., From Wikipedia:. A variety of diagonal arguments are used in mathematics.. Cantor's diagonal argument; Cantor's theorem; Halting problem; Diagonal lemma; Besides the above four examples, there is another one I found in a blog.When proving that "if a sequence of measurable mappings converges in measure, then there is a subsequence converging a.e.", the …, A nonagon, or enneagon, is a polygon with nine sides and nine vertices, and it has 27 distinct diagonals. The formula for determining the number of diagonals of an n-sided polygon is n(n – 3)/2; thus, a nonagon has 9(9 – 3)/2 = 9(6)/2 = 54/..., A set is countable if you can count its elements. Of course if the set is finite, you can easily count its elements. If the set is infinite, being countable means that you are able to put the elements of the set in order just like natural numbers are in order. Yet in other words, it means you are able to put the elements of the set into a ..., Aug 2, 2022 · The fact that the Real Numbers are Uncountably Infinite was first demonstrated by Georg Cantor in $1874$. Cantor's first and second proofs given above are less well known than the diagonal argument, and were in fact downplayed by Cantor himself: the first proof was given as an aside in his paper proving the countability of the algebraic numbers. , This isn't an answer but a proposal for a precise form of the question. …, Cantor's diagonal proof says list all the reals in any countably infinite list (if such a thing is possible) and then construct from the particular list a real number which is not in the list. This leads to the conclusion that it is impossible to list the reals in a countably infinite list. , 5 апр. 2023 г. ... Why Cantor's diagonal argument is logically valid?, Problems with Cantor's diagonal argument and uncountable infinity, Cantors diagonal ..., Wittgenstein wants to show, first, that the diagonal number in Cantor’s proof cannot be defined in any other way than by the diagonal procedure; it has therefore, to use Wittgenstein’s terminology, no ‘surrounding’ [RFM II, 126]. Redecker explains by comparing two examples: if you build a suitable diagonal number for the list of square ..., Iterating by Diagonals over a matrix of reals to prove that the set of real numbers on the interval [0,1) is countable [closed] Thread starter paul.da.programmer Start date 4 minutes ago, A nonagon, or enneagon, is a polygon with nine sides and nine vertices, and it has 27 distinct diagonals. The formula for determining the number of diagonals of an n-sided polygon is n(n – 3)/2; thus, a nonagon has 9(9 – 3)/2 = 9(6)/2 = 54/..., This famous paper by George Cantor is the first published proof of the so-called diagonal argument, which first appeared in the journal of the German Mathematical Union (Deutsche Mathematiker-Vereinigung) (Bd. I, S. 75-78 (1890-1)). The society was founded in 1890 by Cantor with other mathematicians. Cantor was the first president of the society., The fact that the Real Numbers are Uncountably Infinite was first demonstrated by Georg Cantor in $1874$. Cantor's first and second proofs given above are less well known than the diagonal argument, and were in fact downplayed by Cantor himself: the first proof was given as an aside in his paper proving the countability of the algebraic numbers., Feb 28, 2022 · In set theory, Cantor’s diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor’s diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence ... , Applying Cantor's diagonal argument. I understand how Cantor's diagonal argument can be used to prove that the real numbers are uncountable. But I should be able to use this same argument to prove two additional claims: (1) that there is no bijection X → P(X) X → P ( X) and (2) that there are arbitrarily large cardinal numbers., Feb 12, 2019 · In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.: 20– Such sets are …, 1) "Cantor wanted to prove that the real numbers are countable." No. Cantor wanted to prove that if we accept the existence of infinite sets, then the come in different sizes that he called "cardinality." 2) "Diagonalization was his first proof." No. His first proof was published 17 years earlier. 3) "The proof is about real numbers." No. , Theorem 4.9.1 (Schröder-Bernstein Theorem) If ¯ A ≤ ¯ B and ¯ B ≤ ¯ A, then ¯ A = ¯ B. Proof. We may assume that A and B are disjoint sets. Suppose f: A → B and g: B → A are both injections; we need to find a bijection h: A → B. Observe that if a is in A, there is at most one b1 in B such that g(b1) = a. There is, in turn, at ..., The argument Georg Cantor presented was in binary. And I don't mean the binary representation of real numbers. Cantor did not apply the diagonal argument to real numbers at all; he used infinite-length binary strings (quote: "there is a proof of this proposition that ... does not depend on considering the irrational numbers.") So the string ..., This assertion and its proof date back to the 1890’s and to Georg Cantor. The proof is often referred to as “Cantor’s diagonal argument” and applies in more general contexts than we will see in these notes. Georg Cantor : born in St Petersburg (1845), died in Halle (1918) Theorem 42 The open interval (0,1) is not a countable set., 21 янв. 2021 г. ... in his proof that the set of real numbers in the segment [0,1] is not countable; the process is therefore also known as Cantor's diagonal ..., Explanation of Cantor's diagonal argument.This topic has great significance in the field of Engineering & Mathematics field., The entire point of Cantor's diagonal argument was to prove that there are infinite sets that cannot form a bijection with the natural numbers. To say that it cannot be used against natural numbers is absurd. It can't be used to prove that N is uncountable.